Ligand assisted dimerisation of a diplatinum(2+) system: a straightforward high yield access to tetranuclear platinum clusters

Walter Schuh, Helmuth Wachtler, Gerhard Laschober, Holger Kopacka, Klaus Wurst and Paul Peringer*

Institut für Allgemeine, Anorganische und Theoretische Chemie Universität Innsbruck, A-6020 Innsbruck, Austria. E-mail: paul.peringer@uibk.ac.at

Received (in Basel, Switzerland) 13th April 2000, Accepted 24th May 2000

The iodide induced dimerisation of a dppm-/diphenylphos $phido-bridged Pt₂²⁺ system leads to a 56 CVE Pt₄ butterfly$ **cluster which is diprotonated by HO3SCF3 to give a 60 CVE** rectangular Pt₄ cluster.

An electron count of 56 or 54 for tetranuclear platinum clusters in tetrahedral geometry with a latitudinal or longitudinal ligand arrangement is predicted by theoretical studies based on $Pt(PH₃)$ ₂ fragments.¹ 54-electron CVE clusters are proposed to be stabilised by bridging dppm or phosphido ligands, which might be able to retain the less favourable longitudinal ligand arrangement. Taking into account that two additional electrons lead to a butterfly geometry of the Pt_4 core, we report here on a ligand controlled stabilisation of an unusual cluster electron count: a Pt₄ butterfly cluster with the hitherto unknown valence electron count of 56 is readily accessible *via* dimerisation of the diplatinum(2+) system in a suitable ligand sphere. The protonation of the cluster is associated with a novel structural rearrangement of the cluster core to a rectangular 60 CVE Pt_4 skeleton.

Treatment of $[Pt_2(\mu-dppm)(\mu-PPh_2){\eta^2-bicyclo(2.2.1)}$ hept-2-ene $\{2(O_3SCF_3)^2\}$ **1**, (Scheme 1) with 1 mol equiv. of NBu₄I in toluene–dichloromethane (4/1) produces quantitatively the tetranuclear cluster $[Pt_4(\mu-dppm)_2(\mu-PPh_2)_2\bar{I}_2]$ 2 (Scheme 1, Fig. 1†) as dark red red crystals which are sparingly soluble in all common organic solvents. The reaction proceeds *via* the substitution of one bicyclo(2.2.1)hept-2-ene by iodide‡ which may in turn induce the dissociation of the remaining bicyclo- (2.2.1)hept-2-ene resulting in a reactive intermediate. The formation of **2** represents a ring opening dimerisation, the overall oxidation state of the platinum centres of +1 is maintained. We do not know whether the $Pt_2(\mu-PPh_2)$ or the Pt₂(μ -dppm) ring is opened. The molecular structure of 2 exhibits a butterfly shaped Pt_4 skeleton. Complying with a crystallographically imposed *C*² symmetry, the two dppm and two diphenylphosphido ligands alternately bridge between the hinge and wingtip platinum atoms. One terminal iodide ligand is attached to each wingtip.

The wingtip to hinge Pt–Pt distances are 274.03(8) pm for the dppm-bridged and 287.40(8) pm for the diphenylphosphidobridged platinum atoms. The distance between the two hinge Pt atoms of the butterfly framework amounts to 269.33(11) pm. The dihedral angle between the two wings $[144.27(2)^\circ]$ is substantially larger compared with other $Pt₄$ butterfly clusters

Fig. 1 Molecular structure of **2**. The phenyl groups have been omitted for clarity.

 $(83.7–96.8^{\circ})$.³ The Pt₂P₂C rings formed by the dppm ligands adopt twist conformations. The structure seems to be retained in solution according to ³¹P NMR spectroscopy.§

The protonation of **2** with 50% aqueous trifluoromethanesulfonic acid quantitatively produces the yellow tetranuclear
dihydrido cluster $[Pt_4(\mu-dppm)_{2}(\mu-PPh_{2})_{2}(\mu_{2}-H)_{2}(\mu_{2}-H)_{3}(\mu_{2}-H)_{4}(\mu_{2}-H)_{5}(\mu_{3}-H)_{6}(\mu_{4}-H)_{7}(\mu_{5}-H)_{8}(\mu_{6}-H)_{7}(\mu_{7}-H)_{8}(\mu_{8}-H)_{9}(\mu_{9}-H)_{10}(\mu_{10}$ cluster $[\hat{Pt}_4(\mu-dppm)_2(\mu-PPh_2)_2(\mu_2-H)_2(\mu_2-PPh_1)_2]$ I_2 $[O_3$ SCF₃ $]_2$ **3** (Scheme 1, Fig. 2[†]) which is slightly soluble in CH2Cl2. The formation of **3** is accompanied by a rearrangement of the Pt4 shape to a rectangle, a change of the geometry of the phosphido phosphorus relative to the dppm phosphorus atoms from *cis/trans* in **2** to *cis/cis* in **3** and a change to a bridging bonding mode of the iodide ligands. The phosphido bridged edges of the Pt₄ rectangle involve relatively short Pt–Pt distances [279.92(3) and 277.28(3) pm], whilst the distances of the dppm bridged platinum atoms $[296.85(3)$ and $300.58(3)$ pm indicate that the Pt–Pt interactions are weak. All sides are doubly bridged, either by dppm and iodide or by diphenylphosphido and hydride ligands making a 60-electron CVE. The hydride and iodide ligands are on the same side of the Pt_4 plane. The hydride ligands could be located *via* X-ray structure analysis and their position is confirmed by NMR spectroscopy:¶ the intensity of the hydride signal of the isotopomer containing one ¹⁹⁵Pt nucleus demonstrates a μ_2 -H bonding. The P–H coupling constants involving the dppm and phosphido phospho-

Fig. 2 Structure of the cation of **3**. The phenyl groups have been omitted for clarity.

rus atoms are 87.7 and 13.2 Hz respectively. This indicates the $H-Pt-P_{dppm}$ angle to be distinctly larger compared with the $H-$ Pt–P_{phosphido} angle and this requires the hydride ligands to bridge the same edge as the phosphido ligands. The hydride ligands are kinetically stable on the NMR time scale at ambient temperature.

Dimerisation reactions related to the formation of **2** exist for the dipalladium(2+) system: the product of $[{\rm Pd}_2(\mu$ -dppm)₂Cl₂] and NaBH₄ was recently identified as $[{\rm Pd}_{4}(\mu$ -dppm)₄ $(\mu_{4}-H)_{2}]^{2+}$ and the reaction with $[Cu(MeCN)₄]$ ⁺ gave $[P\hat{d}_{4}(\mu-dppm)₄(\mu_{2} Cl$ ₂¹²⁺.4,5 The X-ray structure of the latter product showed a rectangular Pd_4 skeleton [Pd–Pd 259.4(2) and 374.2(3) pm] consisting of two isolated Pd_2 moieties whereas no solid state structure of $[Pd_4(\mu-dppm)_4(\mu_4-H)_2]^{2+}$ is available. Analogous reactions of the platinum congener $[Pt_2(\mu-dppm)_2Cl_2]$ leave the $[Pt_2(\mu-dppm)_2]$ arrangement unchanged.⁶ The different reactivities of the platinum and palladium $[M_2(\mu-dppm)_2Cl_2]$ complexes have been attributed to different M–P bonding strengths. The reactivity of **1** in contrast to $[Pt_2(\mu\text{-dppm})_2Cl_2]$ is apparently due to the presence of both dppm and diphenylphosphido ligands.

Notes and references

 \dagger *Crystal data* for 2: C₇₄H₆₄I₂P₆P_{t4}, *M* = 2173.23, monoclinic, *a* = 1272.88(5), $b = 2578.7(2)$, $c = 2115.80(10)$ pm, $\beta = 97.689(4)$ °, $V =$ 6.8824(7) nm³, $T = 218(2)$ K, space group $C2/c$ (no. 15), $Z = 4$, Mo-K α radiation (λ = 71.073 pm), 15160 reflections measured, 4166 reflections unique ($R_{\text{int}} = 0.0597$), reflections with $I > 2\sigma(I) 3670$, $R1 [I > 2\sigma(I)] =$ 0.0478, $wR2 [I > 2\sigma(I)] = 0.1055$, Goodness of fit 1.253. The structure was solved by direct methods (SHELXS-86),⁷ and refined by full matrix least squares methods on $F²$ (SHELXL-93).⁸

For **3**: $C_{76}H_{66}F_{6}I_{2}O_{6}P_{6}Pt_{4}S_{2}.2.5HO_{3}SCF_{3}.4H_{2}O \cdot 0.5CH_{2}Cl_{2}$, *M* 2963.11, triclinic, $a = 1452.98(2)$, $b = 1850.66(2)$, $c = 1873.47(3)$ pm, α $= 104.854(1), \beta = 96.059(1), \gamma = 99.961(1)$ °, $V = 4.73613(11)$ nm³, $T =$ 218 (2) K, space group $P\bar{1}$ (no. 2), $Z = 2$, Mo-K α radiation ($\lambda = 71.073$ pm), 83252 reflections measured, 14013 reflections unique $(R_{int} = 0.0661)$, reflections with $I > 2\sigma(I)$ 12327, $R1 [I > 2\sigma(I)] = 0.0326$, $wR2 [I > 2\sigma(I)]$ $= 0.0767$, Goodness of fit 1.017. The structure was solved by direct methods (SHELXS-86),7 and refined by full matrix least squares methods on *F*2 (SHELXL-93).8

CCDC 182/1656. See http://www.rsc.org/suppdata/cc/b0/b003101l/ for crystallographic files in .cif format.

 $\frac{1}{4}$ *NMR data* for $[Pt_2(\mu-dppm)(\mu-PPh_2)\{\eta^2-bicyclo(2.2.1)hept-2-ene\}]]$. ³¹P NMR (CD₂Cl₂): δ 198.3 [P¹ (phosphido), *J*(P¹P²) 332.1, *J*(P¹P³) 181.3, *J*(Pt1P1) 2422, *J*(Pt2P1) 3152 Hz], 7.3 [P2 (dppm, phosphorus *cis* to I), *J*(P²P³) 62.8, *J*(Pt¹P²) 54, *J*(Pt²P²) 3493 Hz], -2.7 [P³ (dppm, phosphorus *cis* to bicyclo(2.2.1)hept-2-ene), *J*(Pt1P3) 2896, *J*(Pt2P3) 105.9 Hz]; 195Pt NMR (CD₂Cl₂): δ -5807 [Pt¹ (Pt bound to bicyclo(2.2.1)hept-2-ene), $J(Pt¹Pt²)$ 3137 Hz], -5240 [Pt² (Pt bound to I)].

§ *NMR data* for 2 (labelling of the atoms as in Fig. 1). ³¹P NMR (CD₂Cl₂): d 170.0 [P1, *J*(PtP1) 2563, 2343, 238 Hz], 9.5 [P3, *J*(PtP3) 3865, 813 Hz], -2.4 [P², *J*(PtP²) 2824 Hz].

 \P *NMR data* for **3** (labelling of the atoms as in Fig. 2). ³¹P NMR (CD₂Cl₂): d 142.2 [P5, *J*(Pt1P5) 3236, *J*(Pt2P5) 54 Hz], 17.3 [P1, *J*(Pt1P1) 3974, *J*(Pt4P1) 274 Hz]; ¹H NMR (CD₂Cl₂): δ – 7.39 [²*J*(PH) 13.2 (PPh₂), 87.7 (dppm), ¹*J*(PtH) 403 Hz].

- 1 D. G. Evans, *J. Organomet. Chem.*, 1987, **319**, 265.
- 2 H. Wachtler, W. Schuh, K.-H. Ongania, K. Wurst and P. Peringer, *Organometallics*, 1998, **17**, 5640.
- 3 T. Zhang, M. Drouin and P. D. Harvey, *J. Cluster Sci.*, 1998, **9**, 165 and references therein; G. Douglas, L. Manojlovic-Muir, K. W. Muir, M. C. Jennings, B. R. Lloyd, M. Rashidi, G. Schoettel and R. J. Puddephatt, *Organometallics*, 1991, **10**, 3927 and references therein; K. H. Dahmen, A. Moor, R. Naegeli and L. M. Venanzi, *Inorg. Chem.*, 1991, **30**, 4285 and references therein.
- 4 I. Gauthron, J. Gagnon, T. Zhang, D. Rivard, D. Lucas, Y. Mugnier and P. D. Harvey, *Inorg. Chem.*, 1998, **37**, 1112.
- 5 P. Braunstein, M. A. Luke, A. Tiripicchio and M. Camellini, *Angew. Chem., Int. Ed. Engl.*, 1987, **26**, 768.
- 6 M. C. Grossel, J. R. Batson, R. P. Moulding and K. R. Seddon, *J. Organomet. Chem.*, 1986. **304**, 391.
- 7 G. M. Sheldrick, SHELXS-86: program for crystal structure solutions, Göttingen, 1986.
- 8 G. M. Sheldrick, SHELXL-93: program for refinement of crystal structures, Göttingen, 1993.